Avoiding binary patterns with reversal

James D. Currie & Phillip Lafrance

Oct. 23, 2015 MathStats Seminar Winnipeg

(University of Winnipeg)

Patterns with Reversal

October 2015 1 / 22

Outline

Motivation

- 2 Avoiding patterns
- 3 Classification strategy
- 4 2-avoidable patterns
- 5 3-avoidable patterns
- 6 Total classification

DNA as a sequence of symbols

A DNA sequence from a normal human heart:

TTAAGTATTGTGCAGATG

A DNA sequence from a normal human heart:

AGAAAAGCGCCTCCACGGAGACGGTAACACCACTCAC ATGGATGGATAATCCTATAGAATTAAATGTTAAGGATAGTG TATGGGTACCTGGCCCCACAGATGATCACTGCCCTGCC AAACCTGAGGAAGAAGGGATGATGATAAATATTTCCATTG GGTATCGTTATTCTCCTATTTGCCTAGGAAGAGCACCAGG ATGCTTAATGCCTGCATTCCAAAATTGGTTGGTAGAAGTA CCTACTGCCGGTCCTAACAGTAGACTCACTTATCACATGG TGTACCCAACAGCTCGGAAGAGACAGCGACCATCGAGA ACGGGCCATGATGACGATGGCGGTTTTGTCGAAAAGAA AAGGGGGAAATGTGGGGAAAAGCAAGAGAGAGATCAGATT GTTACTGTGTCTGTGTGTAGAAAGAAGTAGACATAGGAGAC TCCCTTTTGTTCTGTACTAAGAAAAATTATTCTGCCTTGA GATTCTGTTATCTATGACCTTACCCCCAACCCCGTGCTC TCTGAAATATGTGCTGTGTCAAACTCAGGGTTAAATGGA TTAAGTATTGTGCAGATG

A DNA sequence from a normal human heart:

AGAAAAGCGCCTCCACGGAGACGGTAACACCACTCAC ATGGATGGATAATCCTATAGAATTAAATGTTAAGGATAGTG TATGGGTACCTGGCCCCACAGATGATCACTGCCCTGCC AAACCTGAGGAAGAAGGGATGATGATAAATATTTCCATTG GGTATCGTTATTCTCCTATTTGCCTAGGAAGAGCACCAGG ATGCTTAATGCCTGCATTCCAAAATTGGTTGGTAGAAGTA CCTACTGCCGGTCCTAACAGTAGACTCACTTATCACATGG TGTACCCAACAGCTCGGAAGAGACAGCGACCATCGAGA ACGGGCCATGATGACGATGGCGGTTTTGTCGAAAAGAA AAGGGGGAAATGTGGGGAAAAGCAAGAGAGAGATCAGATT GTTACTGTGTCTGTGTGTAGAAAGAAGTAGACATAGGAGAC TCCCTTTTGTTCTGTACTAAGAAAAATTATTCTGCCTTGA GATTCTGTTATCTATGACCTTACCCCCAACCCCGTGCTC TCTGAAATATGTGCTGTGTCAAACTCAGGGTTAAATGGA TTAAGTATTGTGCAGATG

A DNA sequence from a normal human heart:

AGAAAAGCGCCTCCACGGAGACGGTAACACCACTCAC ATGGATGGATAATCCTATAGAATTAAATGTTAAGGATAGTG TATGGGTACCTGGCCCCACAGATGATCACTGCCCTGCC AAACCTGAGGAAGAAGGGATGATGATAAATATTTCCATTG GGTATCGTTATTCTCCTATTTGCCTAGGAAGAGCACCAGG ATGCTTAATGCCTGCATTCCAAAATTGGTTGGTAGAAGTA CCTACTGCCGGTCCTAACAGTAGACTCACTTATCACATGG TGTACCCAACAGCTCGGAAGAGACAGCGACCATCGAGA ACGGGCCATGATGACGATGGCGGTTTTGTCGAAAAGAA AAGGGGGAAATGTGGGGAAAAGCAAGAGAGAGATCAGATT **GTTACTGTGTCTGTGTGTAGAAGAAGAAGTAGACATAGGAGAC** TCCCTTTTGTTCTGTACTAAGAAAAATTATTCTGCCTTGA GATTCTGTTATCTATGACCTTACCCCCAACCCCGTGCTC TCTGAAATATGTGCTGTGTCAAACTCAGGGTTAAATGGA TTAAGTATTGTGCAGATG

- We see that this sequence has a pattern embedded in it, of the form *xxyy*, where *x* = *CTGTGT*, *y* = *AGGA*.
- We may wonder whether these repetitions are functionally significant.
- Perhaps the occurrence of *xxyy* is just coincidence.
- To what extent are various patterns avoidable?
- Does every pattern (e.g., *xx*, *xyx*, *xxyyy*,...) show up in every long enough sequence of symbols?

- We see that this sequence has a pattern embedded in it, of the form *xxyy*, where *x* = *CTGTGT*, *y* = *AGGA*.
- We may wonder whether these repetitions are functionally significant.
- Perhaps the occurrence of *xxyy* is just coincidence.
- To what extent are various patterns avoidable?
- Does every pattern (e.g., *xx*, *xyx*, *xxyyy*,...) show up in every long enough sequence of symbols?

- We see that this sequence has a pattern embedded in it, of the form *xxyy*, where *x* = *CTGTGT*, *y* = *AGGA*.
- We may wonder whether these repetitions are functionally significant.
- Perhaps the occurrence of *xxyy* is just coincidence.
- To what extent are various patterns avoidable?
- Does every pattern (e.g., *xx*, *xyx*, *xxyyy*,...) show up in every long enough sequence of symbols?

- We see that this sequence has a pattern embedded in it, of the form *xxyy*, where *x* = *CTGTGT*, *y* = *AGGA*.
- We may wonder whether these repetitions are functionally significant.
- Perhaps the occurrence of *xxyy* is just coincidence.
- To what extent are various patterns avoidable?
- Does every pattern (e.g., *xx*, *xyx*, *xxyyy*,...) show up in every long enough sequence of symbols?

- We see that this sequence has a pattern embedded in it, of the form *xxyy*, where *x* = *CTGTGT*, *y* = *AGGA*.
- We may wonder whether these repetitions are functionally significant.
- Perhaps the occurrence of *xxyy* is just coincidence.
- To what extent are various patterns avoidable?
- Does every pattern (e.g., *xx*, *xyx*, *xxyyy*,...) show up in every long enough sequence of symbols?

- In the context of DNA, we may be interested, not just in identical repetitions of some string, but in coded repetitions.
- The four bases in DNA are arranged in complementary pairs: $\phi: C \leftrightarrow G, \phi: A \leftrightarrow T$
- Also of importance are **reversals**: $(CCAGATT)^{R} = TTAGACC$.
- For example, geneticists study hairpins: structures of the form xyφ(x^R)
- A hair pin structure

- In the context of DNA, we may be interested, not just in identical repetitions of some string, but in coded repetitions.
- The four bases in DNA are arranged in complementary pairs:
 φ : C ↔ G, φ : A ↔ T
- Also of importance are **reversals**: $(CCAGATT)^{R} = TTAGACC$.
- For example, geneticists study hairpins: structures of the form xyφ(x^R)
- A hair pin structure

• In the context of DNA, we may be interested, not just in identical repetitions of some string, but in coded repetitions.

۲

- In the context of DNA, we may be interested, not just in identical repetitions of some string, but in coded repetitions.
- The four bases in DNA are arranged in complementary pairs:
 φ : C ↔ G, φ : A ↔ T
- Also of importance are **reversals**: $(CCAGATT)^{R} = TTAGACC$.
- For example, geneticists study hairpins: structures of the form xyφ(x^R)
- A hair pin structure

- In the context of DNA, we may be interested, not just in identical repetitions of some string, but in coded repetitions.
- The four bases in DNA are arranged in complementary pairs:
 φ : C ↔ G, φ : A ↔ T
- Also of importance are **reversals**: $(CCAGATT)^{R} = TTAGACC$.
- For example, geneticists study hairpins: structures of the form xyφ(x^R)
- A hair pin structure

- A sequence over a 1-letter alphabet eventually encounters whatever pattern you like.
- Alphabet: {*A*}, Pattern: *xyzxzy*
- *AAAAAAAAAAAAAA*

4 A N

- A sequence over a 1-letter alphabet eventually encounters whatever pattern you like.
- Alphabet: {*A*}, Pattern: *xyzxzy*
- *AAAAAAAAAAAAAA*

4 A N

- 3 >

- A sequence over a 1-letter alphabet eventually encounters whatever pattern you like.
- Alphabet: {*A*}, Pattern: *xyzxzy*
- AAAAAAAAAAAAAAAAA

- A sequence over a 1-letter alphabet eventually encounters whatever pattern you like.
- Alphabet: {*A*}, Pattern: *xyzxzy*

• Over a 2-letter alphabet, some patterns can be avoided

- Let $w_0 = 0$, $w_{n+1} = w_n \bar{w}_n$, where \bar{w} is the binary complement of w
- Iterating w₀ → w₁ → w₂ → w₃ · · · gives the Thue-Morse sequence t
- *t*= 0110100110010110...
- Sequence *t* **avoids** (i.e., does not encounter) *xxx* and *xyxyx* (Thue, 1906).
- We say that *xxx* and *xyxyx* are **2-avoidable**.

• Over a 2-letter alphabet, some patterns can be avoided

- Let $w_0 = 0$, $w_{n+1} = w_n \bar{w}_n$, where \bar{w} is the binary complement of w
- Iterating $w_0 \rightarrow w_1 \rightarrow w_2 \rightarrow w_3 \cdots$ gives the **Thue-Morse** sequence *t*
- *t*= 0110100110010110...
- Sequence *t* **avoids** (i.e., does not encounter) *xxx* and *xyxyx* (Thue, 1906).
- We say that *xxx* and *xyxyx* are **2-avoidable**.

- Over a 2-letter alphabet, some patterns can be avoided
- Let $w_0 = 0$, $w_{n+1} = w_n \bar{w}_n$, where \bar{w} is the binary complement of w
- Iterating w₀ → w₁ → w₂ → w₃ · · · gives the Thue-Morse sequence t
- *t*= 0110100110010110...
- Sequence *t* **avoids** (i.e., does not encounter) *xxx* and *xyxyx* (Thue, 1906).
- We say that xxx and xyxyx are 2-avoidable.

- Over a 2-letter alphabet, some patterns can be avoided
- Let $w_0 = 0$, $w_{n+1} = w_n \bar{w}_n$, where \bar{w} is the binary complement of w
- Iterating w₀ → w₁ → w₂ → w₃ · · · gives the Thue-Morse sequence t
- *t*= 0110100110010110...
- Sequence *t* **avoids** (i.e., does not encounter) *xxx* and *xyxyx* (Thue, 1906).
- We say that xxx and xyxyx are 2-avoidable.

- Over a 2-letter alphabet, some patterns can be avoided
- Let $w_0 = 0$, $w_{n+1} = w_n \bar{w}_n$, where \bar{w} is the binary complement of w
- Iterating w₀ → w₁ → w₂ → w₃ · · · gives the Thue-Morse sequence t
- *t*= 0110100110010110...
- Sequence *t* **avoids** (i.e., does not encounter) *xxx* and *xyxyx* (Thue, 1906).
- We say that *xxx* and *xyxyx* are **2-avoidable**.

- Over a 2-letter alphabet, some patterns can be avoided
- Let $w_0 = 0$, $w_{n+1} = w_n \bar{w}_n$, where \bar{w} is the binary complement of w
- Iterating w₀ → w₁ → w₂ → w₃ · · · gives the Thue-Morse sequence t
- *t*= 0110100110010110...
- Sequence *t* **avoids** (i.e., does not encounter) *xxx* and *xyxyx* (Thue, 1906).
- We say that *xxx* and *xyxyx* are **2-avoidable**.

- Over a 2-letter alphabet, some patterns can be avoided
- Let $w_0 = 0$, $w_{n+1} = w_n \bar{w}_n$, where \bar{w} is the binary complement of w
- Iterating w₀ → w₁ → w₂ → w₃ · · · gives the Thue-Morse sequence t
- *t*= 0110100110010110 · · ·
- Sequence *t* **avoids** (i.e., does not encounter) *xxx* and *xyxyx* (Thue, 1906).
- We say that xxx and xyxyx are 2-avoidable.

- Over a 2-letter alphabet, some patterns can be avoided
- Let $w_0 = 0$, $w_{n+1} = w_n \bar{w}_n$, where \bar{w} is the binary complement of w
- Iterating w₀ → w₁ → w₂ → w₃ · · · gives the Thue-Morse sequence t
- *t*= 0110100110010110...
- Sequence *t* **avoids** (i.e., does not encounter) *xxx* and *xyxyx* (Thue, 1906).
- We say that xxx and xyxyx are 2-avoidable.

- Over a 2-letter alphabet, some patterns can be avoided
- Let $w_0 = 0$, $w_{n+1} = w_n \bar{w}_n$, where \bar{w} is the binary complement of w
- Iterating w₀ → w₁ → w₂ → w₃ · · · gives the Thue-Morse sequence t
- *t*= 0110100110010110...
- Sequence *t* **avoids** (i.e., does not encounter) *xxx* and *xyxyx* (Thue, 1906).
- We say that *xxx* and *xyxyx* are **2-avoidable**.

- Over a 2-letter alphabet, some patterns can be avoided
- Let $w_0 = 0$, $w_{n+1} = w_n \bar{w}_n$, where \bar{w} is the binary complement of w
- Iterating w₀ → w₁ → w₂ → w₃ · · · gives the Thue-Morse sequence t
- *t*= 0110100110010110...
- Sequence *t* **avoids** (i.e., does not encounter) *xxx* and *xyxyx* (Thue, 1906).
- We say that xxx and xyxyx are 2-avoidable.

• A pattern over the alphabet $\{x, y\}$ is called a **binary pattern**.

- Cassaigne (1993) completely classified binary patterns as unavoidable, 2-avoidable or 3-avoidable.
- For example, all binary patterns of length at least 6 are 2-avoidable.
- Let Σ be the alphabet Σ = {x, x^R, y, y^R}. We call a word p ∈ Σ* a binary pattern with reversal.
- This past summer, Philip Lafrance and I completely classified binary patterns with reversal as unavoidable, 2-avoidable or 3-avoidable.

< ロ > < 同 > < 回 > < 回 >

- A pattern over the alphabet $\{x, y\}$ is called a **binary pattern**.
- Cassaigne (1993) completely classified binary patterns as unavoidable, 2-avoidable or 3-avoidable.
- For example, all binary patterns of length at least 6 are 2-avoidable.
- Let Σ be the alphabet Σ = {x, x^R, y, y^R}. We call a word p ∈ Σ* a binary pattern with reversal.
- This past summer, Philip Lafrance and I completely classified binary patterns with reversal as unavoidable, 2-avoidable or 3-avoidable.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- A pattern over the alphabet $\{x, y\}$ is called a **binary pattern**.
- Cassaigne (1993) completely classified binary patterns as unavoidable, 2-avoidable or 3-avoidable.
- For example, all binary patterns of length at least 6 are 2-avoidable.
- Let Σ be the alphabet Σ = {x, x^R, y, y^R}. We call a word p ∈ Σ* a binary pattern with reversal.
- This past summer, Philip Lafrance and I completely classified binary patterns with reversal as unavoidable, 2-avoidable or 3-avoidable.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- A pattern over the alphabet $\{x, y\}$ is called a **binary pattern**.
- Cassaigne (1993) completely classified binary patterns as unavoidable, 2-avoidable or 3-avoidable.
- For example, all binary patterns of length at least 6 are 2-avoidable.
- Let Σ be the alphabet Σ = {x, x^R, y, y^R}. We call a word p ∈ Σ* a binary pattern with reversal.
- This past summer, Philip Lafrance and I completely classified binary patterns with reversal as unavoidable, 2-avoidable or 3-avoidable.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- A pattern over the alphabet $\{x, y\}$ is called a **binary pattern**.
- Cassaigne (1993) completely classified binary patterns as unavoidable, 2-avoidable or 3-avoidable.
- For example, all binary patterns of length at least 6 are 2-avoidable.
- Let Σ be the alphabet Σ = {x, x^R, y, y^R}. We call a word p ∈ Σ* a binary pattern with reversal.
- This past summer, Philip Lafrance and I completely classified binary patterns with reversal as unavoidable, 2-avoidable or 3-avoidable.

- A first step in a classification is to notice symmetries, to reduce unnecessary work.
- If a finite word *w* avoids *p*, then *w*^{*R*} avoids *p*^{*R*}. Thus *p* and *p*^{*R*} are equally avoidable on any given alphabet.
- An instance of $xyyx^Rx$ is also an instance of $yxxy^Ry$ (switching x and y) and of x^Ryyxx^R (switching x and x^R).
- We thus observe symmetries: $p \leftrightarrow p^R$; $x \leftrightarrow y$; $x \leftrightarrow x^R$.
- Consider the lexicographic order on Σ* generated by x < x^R < y < y^R.
- If p ∈ Σ*, define ℓ(p) to be the lexicographically least element of the equivalence class of p under the symmetries just noted.
- For example, $\ell(x^R yy) = xxy$.
- A first step in a classification is to notice symmetries, to reduce unnecessary work.
- If a finite word w avoids p, then w^R avoids p^R. Thus p and p^R are equally avoidable on any given alphabet.
- An instance of $xyyx^Rx$ is also an instance of $yxxy^Ry$ (switching x and y) and of x^Ryyxx^R (switching x and x^R).
- We thus observe symmetries: $p \leftrightarrow p^R$; $x \leftrightarrow y$; $x \leftrightarrow x^R$.
- Consider the lexicographic order on Σ* generated by x < x^R < y < y^R.
- If p ∈ Σ*, define ℓ(p) to be the lexicographically least element of the equivalence class of p under the symmetries just noted.
- For example, $\ell(x^R yy) = xxy$.

- A first step in a classification is to notice symmetries, to reduce unnecessary work.
- If a finite word w avoids p, then w^R avoids p^R. Thus p and p^R are equally avoidable on any given alphabet.
- An instance of xyyx^Rx is also an instance of yxxy^Ry (switching x and y) and of x^Ryyxx^R (switching x and x^R).
- We thus observe symmetries: $p \leftrightarrow p^R$; $x \leftrightarrow y$; $x \leftrightarrow x^R$.
- Consider the lexicographic order on Σ* generated by x < x^R < y < y^R.
- If p ∈ Σ*, define ℓ(p) to be the lexicographically least element of the equivalence class of p under the symmetries just noted.
- For example, $\ell(x^R yy) = xxy$.

- A first step in a classification is to notice symmetries, to reduce unnecessary work.
- If a finite word w avoids p, then w^R avoids p^R. Thus p and p^R are equally avoidable on any given alphabet.
- An instance of xyyx^Rx is also an instance of yxxy^Ry (switching x and y) and of x^Ryyxx^R (switching x and x^R).
- We thus observe symmetries: $p \leftrightarrow p^R$; $x \leftrightarrow y$; $x \leftrightarrow x^R$.
- Consider the lexicographic order on Σ* generated by x < x^R < y < y^R.
- If p ∈ Σ*, define ℓ(p) to be the lexicographically least element of the equivalence class of p under the symmetries just noted.
- For example, $\ell(x^R yy) = xxy$.

- A first step in a classification is to notice symmetries, to reduce unnecessary work.
- If a finite word w avoids p, then w^R avoids p^R. Thus p and p^R are equally avoidable on any given alphabet.
- An instance of xyyx^Rx is also an instance of yxxy^Ry (switching x and y) and of x^Ryyxx^R (switching x and x^R).
- We thus observe symmetries: $p \leftrightarrow p^R$; $x \leftrightarrow y$; $x \leftrightarrow x^R$.
- Consider the lexicographic order on Σ* generated by x < x^R < y < y^R.
- If p ∈ Σ*, define ℓ(p) to be the lexicographically least element of the equivalence class of p under the symmetries just noted.
- For example, $\ell(x^R yy) = xxy$.

- A first step in a classification is to notice symmetries, to reduce unnecessary work.
- If a finite word w avoids p, then w^R avoids p^R. Thus p and p^R are equally avoidable on any given alphabet.
- An instance of xyyx^Rx is also an instance of yxxy^Ry (switching x and y) and of x^Ryyxx^R (switching x and x^R).
- We thus observe symmetries: $p \leftrightarrow p^R$; $x \leftrightarrow y$; $x \leftrightarrow x^R$.
- Consider the lexicographic order on Σ* generated by x < x^R < y < y^R.
- If p ∈ Σ*, define ℓ(p) to be the lexicographically least element of the equivalence class of p under the symmetries just noted.
- For example, $\ell(x^R yy) = xxy$.

- A first step in a classification is to notice symmetries, to reduce unnecessary work.
- If a finite word w avoids p, then w^R avoids p^R. Thus p and p^R are equally avoidable on any given alphabet.
- An instance of xyyx^Rx is also an instance of yxxy^Ry (switching x and y) and of x^Ryyxx^R (switching x and x^R).
- We thus observe symmetries: $p \leftrightarrow p^R$; $x \leftrightarrow y$; $x \leftrightarrow x^R$.
- Consider the lexicographic order on Σ* generated by x < x^R < y < y^R.
- If p ∈ Σ*, define ℓ(p) to be the lexicographically least element of the equivalence class of p under the symmetries just noted.
- For example, $\ell(x^R yy) = xxy$.

A (10) A (10)

- A first step in a classification is to notice symmetries, to reduce unnecessary work.
- If a finite word w avoids p, then w^R avoids p^R. Thus p and p^R are equally avoidable on any given alphabet.
- An instance of xyyx^Rx is also an instance of yxxy^Ry (switching x and y) and of x^Ryyxx^R (switching x and x^R).
- We thus observe symmetries: $p \leftrightarrow p^R$; $x \leftrightarrow y$; $x \leftrightarrow x^R$.
- Consider the lexicographic order on Σ* generated by x < x^R < y < y^R.
- If p ∈ Σ*, define ℓ(p) to be the lexicographically least element of the equivalence class of p under the symmetries just noted.
- For example, $\ell(x^R yy) = xxy$.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- A first step in a classification is to notice symmetries, to reduce unnecessary work.
- If a finite word w avoids p, then w^R avoids p^R. Thus p and p^R are equally avoidable on any given alphabet.
- An instance of xyyx^Rx is also an instance of yxxy^Ry (switching x and y) and of x^Ryyxx^R (switching x and x^R).
- We thus observe symmetries: $p \leftrightarrow p^R$; $x \leftrightarrow y$; $x \leftrightarrow x^R$.
- Consider the lexicographic order on Σ* generated by x < x^R < y < y^R.
- If p ∈ Σ*, define ℓ(p) to be the lexicographically least element of the equivalence class of p under the symmetries just noted.
- For example, $\ell(x^R yy) = xxy$.

- A first step in a classification is to notice symmetries, to reduce unnecessary work.
- If a finite word w avoids p, then w^R avoids p^R. Thus p and p^R are equally avoidable on any given alphabet.
- An instance of xyyx^Rx is also an instance of yxxy^Ry (switching x and y) and of x^Ryyxx^R (switching x and x^R).
- We thus observe symmetries: $p \leftrightarrow p^R$; $x \leftrightarrow y$; $x \leftrightarrow x^R$.
- Consider the lexicographic order on Σ* generated by x < x^R < y < y^R.
- If p ∈ Σ*, define ℓ(p) to be the lexicographically least element of the equivalence class of p under the symmetries just noted.
- For example, $\ell(x^R yy) = xxy$.

- A first step in a classification is to notice symmetries, to reduce unnecessary work.
- If a finite word w avoids p, then w^R avoids p^R. Thus p and p^R are equally avoidable on any given alphabet.
- An instance of xyyx^Rx is also an instance of yxxy^Ry (switching x and y) and of x^Ryyxx^R (switching x and x^R).
- We thus observe symmetries: $p \leftrightarrow p^R$; $x \leftrightarrow y$; $x \leftrightarrow x^R$.
- Consider the lexicographic order on Σ* generated by x < x^R < y < y^R.
- If p ∈ Σ*, define ℓ(p) to be the lexicographically least element of the equivalence class of p under the symmetries just noted.
- For example, $\ell(x^R yy) = xxy$.

• The following patterns are 2-avoidable for various reasons:

- $S_{2,1} = \{xxx, xxyxyy, xxyyx, xyxxy, xyxyx\}$ (Cassaigne)
- $S_{2,2} = \{xyxyx^R\}$
- $S_{2,3} = \{xxyxy^R, xxyx^Ry, xxyx^Ry^R, xxyyx^R, xx^R, xyx^Rx^Ry, xyyx^R\}$
- $S_{2,4} = \{xyxy^Rx^R, xyx^Ry^Rx, xyxy^Rx, xyx^Ryx\}.$

- The following patterns are 2-avoidable for various reasons:
- $S_{2,1} = \{xxx, xxyxyy, xxyyx, xyxxy, xyxyx\}$ (Cassaigne)
- $S_{2,2} = \{xyxyx^R\}$
- $S_{2,3} = \{xxyxy^R, xxyx^Ry, xxyx^Ry^R, xxyyx^R, xx^R, xyx^Rx^Ry, xyyx^R\}$
- $S_{2,4} = \{xyxy^Rx^R, xyx^Ry^Rx, xyxy^Rx, xyx^Ryx\}.$

- The following patterns are 2-avoidable for various reasons:
- $S_{2,1} = \{xxx, xxyxyy, xxyyx, xyxxy, xyxyx\}$ (Cassaigne)
- $S_{2,2} = \{xyxyx^R\}$
- $S_{2,3} = \{xxyxy^R, xxyx^Ry, xxyx^Ry^R, xxyyx^R, xx^R, xyx^Rx^Ry, xyyx^R\}$
- $S_{2,4} = \{xyxy^Rx^R, xyx^Ry^Rx, xyxy^Rx, xyx^Ryx\}.$

- The following patterns are 2-avoidable for various reasons:
- $S_{2,1} = \{xxx, xxyxyy, xxyyx, xyxxy, xyxyx\}$ (Cassaigne)
- $S_{2,2} = \{xyxyx^R\}$
- $S_{2,3} = \{xxyxy^R, xxyx^Ry, xxyx^Ry^R, xxyyx^R, xx^R, xyx^Rx^Ry, xyyx^R\}$
- $S_{2,4} = \{xyxy^Rx^R, xyx^Ry^Rx, xyxy^Rx, xyx^Ryx\}.$

- The following patterns are 2-avoidable for various reasons:
- $S_{2,1} = \{xxx, xxyxyy, xxyyx, xyxxy, xyxyx\}$ (Cassaigne)
- $S_{2,2} = \{xyxyx^R\}$
- $S_{2,3} = \{xxyxy^R, xxyx^Ry, xxyx^Ry^R, xxyyx^R, xx^R, xyx^Rx^Ry, xyyx^R\}$
- $S_{2,4} = \{xyxy^Rx^R, xyx^Ry^Rx, xyxy^Rx, xyx^Ryx\}.$

• Recall that $S_{2,2} = \{xyxyx^R\}$.

- Fraenkel and Simpson (1995) constructed a binary sequence *f* in which the only instances of *xx* are 00, 11 and 0101.
- Suppose that *f* contains a factor *XYXYX^R*, where *X* and *Y* are non-empty words.
- Since *XYXY* is a square of length greater than 2, we must have XYXY = 0101, forcing X = 0, Y = 1.
- Then $XYXYX^R = 01010$, and f contains the square 1010.
- This is a contradiction.

- Recall that $S_{2,2} = \{xyxyx^R\}$.
- Fraenkel and Simpson (1995) constructed a binary sequence *f* in which the only instances of *xx* are 00, 11 and 0101.
- Suppose that *f* contains a factor *XYXYX^R*, where *X* and *Y* are non-empty words.
- Since *XYXY* is a square of length greater than 2, we must have XYXY = 0101, forcing X = 0, Y = 1.
- Then $XYXYX^R = 01010$, and f contains the square 1010.
- This is a contradiction.

- Recall that $S_{2,2} = \{xyxyx^R\}$.
- Fraenkel and Simpson (1995) constructed a binary sequence *f* in which the only instances of *xx* are 00, 11 and 0101.
- Suppose that *f* contains a factor *XYXYX^R*, where *X* and *Y* are non-empty words.
- Since *XYXY* is a square of length greater than 2, we must have XYXY = 0101, forcing X = 0, Y = 1.
- Then $XYXYX^R = 01010$, and f contains the square 1010.
- This is a contradiction.

- Recall that $S_{2,2} = \{xyxyx^R\}$.
- Fraenkel and Simpson (1995) constructed a binary sequence *f* in which the only instances of *xx* are 00, 11 and 0101.
- Suppose that *f* contains a factor *XYXYX^R*, where *X* and *Y* are non-empty words.
- Since *XYXY* is a square of length greater than 2, we must have XYXY = 0101, forcing X = 0, Y = 1.
- Then $XYXYX^R = 01010$, and f contains the square 1010.
- This is a contradiction.

- Recall that $S_{2,2} = \{xyxyx^R\}$.
- Fraenkel and Simpson (1995) constructed a binary sequence *f* in which the only instances of *xx* are 00, 11 and 0101.
- Suppose that *f* contains a factor *XYXYX^R*, where *X* and *Y* are non-empty words.
- Since *XYXY* is a square of length greater than 2, we must have XYXY = 0101, forcing X = 0, Y = 1.
- Then $XYXYX^R = 01010$, and *f* contains the square 1010.
- This is a contradiction.

- Recall that $S_{2,2} = \{xyxyx^R\}$.
- Fraenkel and Simpson (1995) constructed a binary sequence *f* in which the only instances of *xx* are 00, 11 and 0101.
- Suppose that *f* contains a factor *XYXYX^R*, where *X* and *Y* are non-empty words.
- Since *XYXY* is a square of length greater than 2, we must have XYXY = 0101, forcing X = 0, Y = 1.
- Then $XYXYX^R = 01010$, and *f* contains the square 1010.
- This is a contradiction.

Recall that

 $S_{2,3} = \{xxyxy^R, xxyx^Ry, xxyx^Ry^R, xxyyx^R, xx^R, xyx^Rx^Ry, xyyx^R\}$

- The notation $(01)^{\omega}$ stands for the infinite alternating binary string $(01)^{\omega} = 01010101 \cdots$
- Let *p* be a binary pattern with reversal.
- Define G(p) to be the graph with vertex set Σ, and an edge between a^R and b whenever ab is a length two factor of p.

Recall that

 $S_{2,3} = \{xxyxy^R, xxyx^Ry, xxyx^Ry^R, xxyyx^R, xx^R, xyx^Rx^Ry, xyyx^R\}$

- The notation $(01)^{\omega}$ stands for the infinite alternating binary string $(01)^{\omega} = 01010101\cdots$
- Let *p* be a binary pattern with reversal.
- Define G(p) to be the graph with vertex set Σ, and an edge between a^R and b whenever ab is a length two factor of p.

Recall that S_{2,3} = {xxyxy^R, xxyx^Ry, xxyx^Ry^R, xxyyx^R, xx^R, xyx^Rx^Ry, xyyx^R}

- The notation $(01)^{\omega}$ stands for the infinite alternating binary string $(01)^{\omega} = 01010101\cdots$
- Let *p* be a binary pattern with reversal.
- Define G(p) to be the graph with vertex set Σ, and an edge between a^R and b whenever ab is a length two factor of p.

- Recall that $S_{2,3} = \{xxyxy^R, xxyx^Ry, xxyx^Ry^R, xxyyx^R, xx^R, xyx^Rx^Ry, xyyx^R\}$
- The notation $(01)^{\omega}$ stands for the infinite alternating binary string $(01)^{\omega} = 01010101\cdots$
- Let *p* be a binary pattern with reversal.
- Define G(p) to be the graph with vertex set Σ, and an edge between a^R and b whenever ab is a length two factor of p.

Some 2-avoidable patterns

Figure: The graph G(p), where $p = x^R x y x^R x^R y$.

(University of Winnipeg)

< 🗇 🕨 < 🖃 >

Let $p \in \{x, x^R, y, y^R\}^*$. An instance of p appears in $(01)^{\omega}$ if and only if G(p) is bipartite.

For each $p \in S_{2,3}$, G(p) contains an odd cycle, so that p is avoided by $(01)^{\omega}$.

Let $p \in \{x, x^R, y, y^R\}^*$. An instance of p appears in $(01)^{\omega}$ if and only if G(p) is bipartite.

For each $p \in S_{2,3}$, G(p) contains an odd cycle, so that p is avoided by $(01)^{\omega}$.

• New constructions had to be found for each of the patterns of S_{2,4}.

- For example, let *h* be the binary morphism given by *h*(0) = 0, *h*(1) = 00101101111, and let w₁ = *h*(t).
- The sequence \mathbf{w}_1 avoids $xyxy^Rx^R$.

- New constructions had to be found for each of the patterns of S_{2,4}.
- For example, let *h* be the binary morphism given by h(0) = 0, h(1) = 00101101111, and let $\mathbf{w}_1 = h(\mathbf{t})$.

• The sequence \mathbf{w}_1 avoids $xyxy^Rx^R$.

- New constructions had to be found for each of the patterns of S_{2,4}.
- For example, let *h* be the binary morphism given by h(0) = 0, h(1) = 00101101111, and let $\mathbf{w}_1 = h(\mathbf{t})$.
- The sequence $\mathbf{w_1}$ avoids $xyxy^Rx^R$.

Let
$$S_2 = \bigcup_{i=1}^4 S_{2,i}$$
.

The patterns of S_2 are 2-avoidable.

Theorem

Let p be a binary pattern with reversal. Then p is 2-avoidable if and only if $\ell(u) \in S_2$ for some factor u of p.

Let
$$S_2 = \bigcup_{i=1}^4 S_{2,i}$$
.

The patterns of S_2 are 2-avoidable.

Theorem

Let p be a binary pattern with reversal. Then p is 2-avoidable if and only if $\ell(u) \in S_2$ for some factor u of p.

< ロ > < 同 > < 回 > < 回 >

Let
$$S_2 = \bigcup_{i=1}^4 S_{2,i}$$
.

The patterns of S_2 are 2-avoidable.

Theorem

Let p be a binary pattern with reversal. Then p is 2-avoidable if and only if $\ell(u) \in S_2$ for some factor u of p.

A B A A B A

A D M A A A M M

Characterization of 2-avoidable patterns

• For each non-negative integer n, let A_n be defined by

- $A_n = \{q : |q| = n, q = \ell(q), \text{ and if } u \text{ is a factor of } q \text{ then } \ell(u) \notin S_2\}.$
- If q is in A_n , then q = ra, where r is equivalent to a word of A_{n-1} , $a \in \Sigma$.

•
$$A_0 = \{\epsilon\}, A_1 = \{x\}, A_2 = \{xx, xy\}, A_3 = \{xxy, xyx, xyx^R\}, A_4 = \{xxyx, xxyx^R, xxyy, xyxy, xyxy^R, xyx^R, xyyx\}, A_5 = \{xxyxx, xxyxy, xxyx^Rx^R\}, A_6 = \phi.$$

- It follows that $A_n = \phi$, $n \ge 6$.
- A finite search shows that the patterns of A_n , $0 \le n \le 6$, are not 2-avoidable.

Characterization of 2-avoidable patterns

- For each non-negative integer n, let A_n be defined by
- $A_n = \{q : |q| = n, q = \ell(q), \text{ and if } u \text{ is a factor of } q \text{ then } \ell(u) \notin S_2\}.$
- If q is in A_n , then q = ra, where r is equivalent to a word of A_{n-1} , $a \in \Sigma$.

•
$$A_0 = \{\epsilon\}, A_1 = \{x\}, A_2 = \{xx, xy\}, A_3 = \{xxy, xyx, xyx^R\}, A_4 = \{xxyx, xxyx^R, xxyy, xyxy, xyxy^R, xyx^R, xyyx\}, A_5 = \{xxyxx, xxyxy, xxyx^Rx^R\}, A_6 = \phi.$$

- It follows that $A_n = \phi$, $n \ge 6$.
- A finite search shows that the patterns of A_n , $0 \le n \le 6$, are not 2-avoidable.
- For each non-negative integer *n*, let *A_n* be defined by
- $A_n = \{q : |q| = n, q = \ell(q), \text{ and if } u \text{ is a factor of } q \text{ then } \ell(u) \notin S_2\}.$
- If q is in A_n , then q = ra, where r is equivalent to a word of A_{n-1} , $a \in \Sigma$.

•
$$A_0 = \{\epsilon\}, A_1 = \{x\}, A_2 = \{xx, xy\}, A_3 = \{xxy, xyx, xyx^R\}, A_4 = \{xxyx, xxyx^R, xxyy, xyxy, xyxy^R, xyx^R, xyyx\}, A_5 = \{xxyxx, xxyxy, xxyx^Rx^R\}, A_6 = \phi.$$

- It follows that $A_n = \phi$, $n \ge 6$.
- A finite search shows that the patterns of A_n , $0 \le n \le 6$, are not 2-avoidable.

- For each non-negative integer n, let A_n be defined by
- $A_n = \{q : |q| = n, q = \ell(q), \text{ and if } u \text{ is a factor of } q \text{ then } \ell(u) \notin S_2\}.$
- If q is in A_n , then q = ra, where r is equivalent to a word of A_{n-1} , $a \in \Sigma$.
 - $A_0 = \{\epsilon\}, A_1 = \{x\}, A_2 = \{xx, xy\}, A_3 = \{xxy, xyx, xyx^R\}, A_4 = \{xxyx, xxyx^R, xxyy, xyxy, xyxy^R, xyx^R, xyyx\}, A_5 = \{xxyxx, xxyxy, xxyx^Rx^R\}, A_6 = \phi.$
- It follows that $A_n = \phi$, $n \ge 6$.
- A finite search shows that the patterns of A_n , $0 \le n \le 6$, are not 2-avoidable.

- For each non-negative integer n, let A_n be defined by
- $A_n = \{q : |q| = n, q = \ell(q), \text{ and if } u \text{ is a factor of } q \text{ then } \ell(u) \notin S_2\}.$
- If q is in A_n , then q = ra, where r is equivalent to a word of A_{n-1} , $a \in \Sigma$.
 - $A_0 = \{\epsilon\}, A_1 = \{x\}, A_2 = \{xx, xy\}, A_3 = \{xxy, xyx, xyx^R\}, A_4 = \{xxyx, xxyx^R, xxyy, xyxy, xyxy^R, xyx^R, xyx^R\}, A_5 = \{xxyxx, xxyxy, xxyx^Rx^R\}, A_6 = \phi.$
- It follows that $A_n = \phi$, $n \ge 6$.
- A finite search shows that the patterns of A_n , $0 \le n \le 6$, are not 2-avoidable.

- For each non-negative integer n, let A_n be defined by
- $A_n = \{q : |q| = n, q = \ell(q), \text{ and if } u \text{ is a factor of } q \text{ then } \ell(u) \notin S_2\}.$
- If q is in A_n , then q = ra, where r is equivalent to a word of A_{n-1} , $a \in \Sigma$.
 - $A_0 = \{\epsilon\}, A_1 = \{x\}, A_2 = \{xx, xy\}, A_3 = \{xxy, xyx, xyx^R\}, A_4 = \{xxyx, xxyx^R, xxyy, xyxy, xyxy^R, xyx^R, xyx^R\}, A_5 = \{xxyxx, xxyxy, xxyx^Rx^R\}, A_6 = \phi.$
- It follows that $A_n = \phi$, $n \ge 6$.
- A finite search shows that the patterns of A_n , $0 \le n \le 6$, are not 2-avoidable.

- For each non-negative integer n, let A_n be defined by
- $A_n = \{q : |q| = n, q = \ell(q), \text{ and if } u \text{ is a factor of } q \text{ then } \ell(u) \notin S_2\}.$
- If q is in A_n , then q = ra, where r is equivalent to a word of A_{n-1} , $a \in \Sigma$.
 - $A_0 = \{\epsilon\}, A_1 = \{x\}, A_2 = \{xx, xy\}, A_3 = \{xxy, xyx, xyx^R\}, A_4 = \{xxyx, xxyx^R, xxyy, xyxy, xyxy^R, xyx^R, xyyx\}, A_5 = \{xxyxx, xxyxy, xxyx^Rx^R\}, A_6 = \phi.$
- It follows that $A_n = \phi$, $n \ge 6$.
- A finite search shows that the patterns of A_n , $0 \le n \le 6$, are not 2-avoidable.

- For each non-negative integer n, let A_n be defined by
- $A_n = \{q : |q| = n, q = \ell(q), \text{ and if } u \text{ is a factor of } q \text{ then } \ell(u) \notin S_2\}.$
- If q is in A_n , then q = ra, where r is equivalent to a word of A_{n-1} , $a \in \Sigma$.
 - $A_0 = \{\epsilon\}, A_1 = \{x\}, A_2 = \{xx, xy\}, A_3 = \{xxy, xyx, xyx^R\}, A_4 = \{xxyx, xxyx^R, xxyy, xyxy, xyxy^R, xyx^R, xyx^R\}, A_5 = \{xxyxx, xxyxy, xxyx^Rx^R\}, A_6 = \phi.$
- It follows that $A_n = \phi$, $n \ge 6$.
- A finite search shows that the patterns of A_n , $0 \le n \le 6$, are not 2-avoidable.

- For each non-negative integer n, let A_n be defined by
- $A_n = \{q : |q| = n, q = \ell(q), \text{ and if } u \text{ is a factor of } q \text{ then } \ell(u) \notin S_2\}.$
- If q is in A_n , then q = ra, where r is equivalent to a word of A_{n-1} , $a \in \Sigma$.
 - $A_0 = \{\epsilon\}, A_1 = \{x\}, A_2 = \{xx, xy\}, A_3 = \{xxy, xyx, xyx^R\}, A_4 = \{xxyx, xxyx^R, xxyy, xyxy, xyxy^R, xyx^R, xyx^R\}, A_5 = \{xxyxx, xxyxy, xxyx^Rx^R\}, A_6 = \phi.$
- It follows that $A_n = \phi$, $n \ge 6$.
- A finite search shows that the patterns of A_n , $0 \le n \le 6$, are not 2-avoidable.

- For each non-negative integer n, let A_n be defined by
- $A_n = \{q : |q| = n, q = \ell(q), \text{ and if } u \text{ is a factor of } q \text{ then } \ell(u) \notin S_2\}.$
- If q is in A_n , then q = ra, where r is equivalent to a word of A_{n-1} , $a \in \Sigma$.

•
$$A_0 = \{\epsilon\}, A_1 = \{x\}, A_2 = \{xx, xy\}, A_3 = \{xxy, xyx, xyx^R\}, A_4 = \{xxyx, xxyx^R, xxyy, xyxy, xyxy^R, xyx^R, xyyx\}, A_5 = \{xxyxx, xxyxy, xxyx^Rx^R\}, A_6 = \phi.$$

- It follows that $A_n = \phi$, $n \ge 6$.
- A finite search shows that the patterns of A_n , $0 \le n \le 6$, are not 2-avoidable.

- For each non-negative integer n, let A_n be defined by
- $A_n = \{q : |q| = n, q = \ell(q), \text{ and if } u \text{ is a factor of } q \text{ then } \ell(u) \notin S_2\}.$
- If q is in A_n , then q = ra, where r is equivalent to a word of A_{n-1} , $a \in \Sigma$.

•
$$A_0 = \{\epsilon\}, A_1 = \{x\}, A_2 = \{xx, xy\}, A_3 = \{xxy, xyx, xyx^R\}, A_4 = \{xxyx, xxyx^R, xxyy, xyxy, xyxy^R, xyx^Ry^R, xyyx\}, A_5 = \{xxyxx, xxyxy, xxyx^Rx^R\}, A_6 = \phi.$$

- It follows that $A_n = \phi$, $n \ge 6$.
- A finite search shows that the patterns of A_n , $0 \le n \le 6$, are not 2-avoidable.

- For each non-negative integer n, let A_n be defined by
- $A_n = \{q : |q| = n, q = \ell(q), \text{ and if } u \text{ is a factor of } q \text{ then } \ell(u) \notin S_2\}.$
- If q is in A_n , then q = ra, where r is equivalent to a word of A_{n-1} , $a \in \Sigma$.

•
$$A_0 = \{\epsilon\}, A_1 = \{x\}, A_2 = \{xx, xy\}, A_3 = \{xxy, xyx, xyx^R\}, A_4 = \{xxyx, xxyx^R, xxyy, xyxy, xyxy^R, xyx^Ry^R, xyyx\}, A_5 = \{xxyxx, xxyxy, xxyx^Rx^R\}, A_6 = \phi.$$

- It follows that $A_n = \phi$, $n \ge 6$.
- A finite search shows that the patterns of A_n , $0 \le n \le 6$, are not 2-avoidable.

- For each non-negative integer n, let A_n be defined by
- $A_n = \{q : |q| = n, q = \ell(q), \text{ and if } u \text{ is a factor of } q \text{ then } \ell(u) \notin S_2\}.$
- If q is in A_n , then q = ra, where r is equivalent to a word of A_{n-1} , $a \in \Sigma$.

•
$$A_0 = \{\epsilon\}, A_1 = \{x\}, A_2 = \{xx, xy\}, A_3 = \{xxy, xyx, xyx^R\}, A_4 = \{xxyx, xxyx^R, xxyy, xyxy, xyxy^R, xyx^Ry^R, xyyx\}, A_5 = \{xxyxx, xxyxy, xxyx^Rx^R\}, A_6 = \phi.$$

- It follows that $A_n = \phi$, $n \ge 6$.
- A finite search shows that the patterns of A_n , $0 \le n \le 6$, are not 2-avoidable.

- For each non-negative integer n, let A_n be defined by
- $A_n = \{q : |q| = n, q = \ell(q), \text{ and if } u \text{ is a factor of } q \text{ then } \ell(u) \notin S_2\}.$
- If q is in A_n , then q = ra, where r is equivalent to a word of A_{n-1} , $a \in \Sigma$.

•
$$A_0 = \{\epsilon\}, A_1 = \{x\}, A_2 = \{xx, xy\}, A_3 = \{xxy, xyx, xyx^R\}, A_4 = \{xxyx, xxyx^R, xxyy, xyxy, xyxy^R, xyx^Ry^R, xyyx\}, A_5 = \{xxyxx, xxyxy, xxyx^Rx^R\}, A_6 = \phi.$$

- It follows that $A_n = \phi$, $n \ge 6$.
- A finite search shows that the patterns of *A_n*, 0 ≤ *n* ≤ 6, are not 2-avoidable.

Let $S_3 = \{xx, xyxy, xyxy^R, xyx^Ry^R\}.$

Theorem

The patterns of S_3 are 3-avoidable.

- The pattern xx was shown to be 3-avoidable by Thue.
- The other patterns of S_3 are avoided by a 3-letter word built from the word *f* of Fraenkel and Simpson.
- A finite search shows that the patterns of S_3 are not 2-avoidable.

Theorem

Let p be a binary pattern with reversal. If l(p) is a prefix of one of xyx and xyx^R, then p is unavoidable; otherwise p is 3-avoidable.

< ロ > < 同 > < 回 > < 回 >

Let $S_3 = \{xx, xyxy, xyxy^R, xyx^Ry^R\}.$

Theorem

The patterns of S_3 are 3-avoidable.

- The pattern *xx* was shown to be 3-avoidable by Thue.
- The other patterns of S_3 are avoided by a 3-letter word built from the word *f* of Fraenkel and Simpson.
- A finite search shows that the patterns of S_3 are not 2-avoidable.

Theorem

Let p be a binary pattern with reversal. If $\ell(p)$ is a prefix of one of xyx and xyx^R, then p is unavoidable; otherwise p is 3-avoidable.

Let $S_3 = \{xx, xyxy, xyxy^R, xyx^Ry^R\}.$

Theorem

The patterns of S_3 are 3-avoidable.

• The pattern xx was shown to be 3-avoidable by Thue.

- The other patterns of S_3 are avoided by a 3-letter word built from the word *f* of Fraenkel and Simpson.
- A finite search shows that the patterns of S_3 are not 2-avoidable.

Theorem

Let p be a binary pattern with reversal. If $\ell(p)$ is a prefix of one of xyx and xyx^R, then p is unavoidable; otherwise p is 3-avoidable.

Let
$$S_3 = \{xx, xyxy, xyxy^R, xyx^Ry^R\}.$$

Theorem

The patterns of S_3 are 3-avoidable.

- The pattern xx was shown to be 3-avoidable by Thue.
- The other patterns of S_3 are avoided by a 3-letter word built from the word *f* of Fraenkel and Simpson.
- A finite search shows that the patterns of S_3 are not 2-avoidable.

Theorem

Let p be a binary pattern with reversal. If l(p) is a prefix of one of xyx and xyx^R, then p is unavoidable; otherwise p is 3-avoidable.

Let
$$S_3 = \{xx, xyxy, xyxy^R, xyx^Ry^R\}.$$

Theorem

The patterns of S_3 are 3-avoidable.

- The pattern xx was shown to be 3-avoidable by Thue.
- The other patterns of *S*₃ are avoided by a 3-letter word built from the word *f* of Fraenkel and Simpson.
- A finite search shows that the patterns of S_3 are not 2-avoidable.

Theorem

Let p be a binary pattern with reversal. If l(p) is a prefix of one of xyx and xyx^R, then p is unavoidable; otherwise p is 3-avoidable.

Let
$$S_3 = \{xx, xyxy, xyxy^R, xyx^Ry^R\}.$$

Theorem

The patterns of S_3 are 3-avoidable.

- The pattern xx was shown to be 3-avoidable by Thue.
- The other patterns of *S*₃ are avoided by a 3-letter word built from the word *f* of Fraenkel and Simpson.
- A finite search shows that the patterns of S_3 are not 2-avoidable.

Theorem

Let p be a binary pattern with reversal. If $\ell(p)$ is a prefix of one of xyx and xyx^R , then p is unavoidable; otherwise p is 3-avoidable.

イロト イ押ト イヨト イヨト

Theorem (Main Theorem)

Let p be a binary pattern with reversal. The avoidability index of p is 2, 3 or ∞ .

For all the details, see the preprint.

• • • • • • • • • • • • • •

Theorem (Main Theorem)

Let p be a binary pattern with reversal. The avoidability index of p is 2, 3 or ∞ .

For all the details, see the preprint.

< 17 ▶